Математика

Физика

Химия

Биология

Техника и    технологии

Курс высшей математики Том3 часть вторая-В.С.Смирнов Москува 1969 стр.652
ОГЛАВЛЕНИЕ
Предисловие к восьмому изданию...................... 7
ГЛАВА I
ОСНОВЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО
1. Функции комплексного переменного (9). 2. Производная (15). 3. Конформное преобразование (21). 4. Интеграл (24). 5. Теорема Коши (27). 6. Основная формула интегрального исчисления (31). 7. Формула Коши (34). 8. Интегралы типа Коши (40). 9. Следствия формулы Коши (42). 10, Изолированные особые точки (44). 11. Бесконечные рядц с комплексными членами (47). 12. Теорема Вейер-штрасса (50). 13. Степенные ряды (52). 14. Ряд Тейлора (55). 15. Ряд Лорана (57). 16. Примеры (61). 17. Изолированные особые точки. Бесконечно далекая точка (66). 18. Аналитическое продолжение (71). 19. Примеры многозначных функций (78). 20. Особые точки аналитических функций и римановы поверхности (87). 21. Теорема вычетов (91). 22. Теоремы о числе корней (94). 23. Обращение степенного ряда (98). 24. Принцип симметрии (101). 25. Ряд Тейлора на окружности крута Сходимости (105). 26. Дополнительные сведения о формуле Коши (108). 27. Главное значение интеграла (ПО). 28. Главное значение интеграла (продолжение) (115). 29. Интегралы типа К'оши (120). 30. Интегралы типа Коши (продолжение) (125).
г л А в А и КОНФОРМНОЕ ПРЕОБРАЗОВАНИЕ И ПЛОСКОЕ ПОЛЕ
31. Конформное преобразование (127). 32. Линейное преобразование (130). 33. Дробно-линейное преобразование (132). 34. Функция и> = 22
k I I \ (142). 35. Функция w — -^ [г -\-- (143). 36. Двуугольник и полоса
/ \ г I
(146). 37. Основная теорема (149). '38. Формула Кристоффеля (152). 39. Частные случаи (157). 40. Случай внешности многоугольника (161). 41. Минимальное свойство преобразования на круг (162). 42. Способ сопряженных тригонометрических рядов (165). 43. Плоское установившееся течение жидкости (169). 44. Примеры (171). 45. Задача полного обтекания (175). 46. Формула Н. Е. Жуковского (176). 47. Плоская
электростатическая задача (178). 48. Формула Шварца (181). 49. Ядро ctg s~ (184). 50. Предельные задачи (188). 51. Бигармоническое уравнение (193). 52. Волновое уравнение,и аналитические функции (196). 53. Основная теорема (198). 54. Дифракция плоской волны (204).
55. Отражение упругих волн от прямолинейной границы (209).
г л А в A in
ПРИМЕНЕНИЕ ТЕОРИИ ВЫЧЕТОВ, ЦЕЛЫЕ И ДРОБНЫЕ ФУНКЦИИ
56. Интеграл Френеля (215). 57. Интегрирование выражений с тригоно-, метрическими функциями (217). 58. Интегрирование рациональной дро- , би (219). .59. Некоторые новые типы интегралов счтриго'нометриче-скими функциями (221). 60. Лемма Жордана (224). 61. Представление некоторых функций контурными интегралами (226). 62, Примеры интегралов от многозначных функций (230). 63. Интегрирование системы линейных уравнений с постоянными коэффициентами (234). 64. Разложение дробной функции на простейшие дроби (240). 65. Функция ctg г. (244). 66. Построение мероморфной функции (246). 67. Целые функции (248). 68. Бесконечные произведения (250). 69. Построение целой функции по ее корням (253). 70. Интегралы, зависящие от параметра (257). 71. Эйлеров интеграл второго рода (260). 72. Эйлеров интеграл первого, рода (265). 73. Бесконечное произведение для функции [Г (z)]"1 (266). 74. Представление Г (г) контурным интегралом (272), 75. Формула Стирлинга (275). 76. Формула суммирования Эйлера (281). 77. Числа Бернулли (284). 78. Метод скорейшего спуска (286). 79. Асимптотическое разложение интеграла (288). 80. Примеры (293). 81. Метод стационарной фазы (297). ~
г ЛАВ А 'IV
АНАЛИТИЧЕСКИЕ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ И ФУНКЦИИ МАТРИЦ
82. Регулярные функции многих переменных (300). 83. Двойной интеграл и формула Коши (302). 84. Степенные ряды (304). 85. Аналитическое продолжение (310). 86. Функции матриц. Предварительные по-натия (311). 87. Степенные ряды от одной матрицы (313). 88. Умножение степенных рядов. Обращение стейенного ряда (316). 89. Дальнейшее исследование сходимости (319). 90. Интерполяционные полиномы (324).-91. Тождество Кейли. Формула Сильвестра (325). 92. Определение функций одной матрицы формулой Коши (327). 93. Аналитическое продолжение (330). 94. Логарифм матриц (335). 95. Обращение целой функции от матрицы в случае матриц второго порядка (336)i 96. Системы линейных уравнений с постоянными коэффициентами (339). 97. Функции нескольких матриц (344).
ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
98. Разложение решения в степенной ряд (347). 99. Аналитическое продолжение решения (351). 100. Окрестность особой точки (353). -101. Регулярная особая точка (358). 102. Уравнения класса Фукса (366). 103. Уравнение Гаусса (370). 104. Гипергеометрический ряд (372). 105. Полиномы Лежандра (377). 106. Полиномы Якоби (383). 107. Конформное преобразование и уравнение Гаусса (387). 108. Преобразование Лапласа (392). 109. Различный выбор решений (394). 110. Уравнение Бесселя (397). 111. Функции Ханкеля и интегральное представление решений уравнения Бесселя (400). 112. Асимптотические разложения (403). 113. Асимптотические разложения решений, полученных преобразованием Лапласа (408). 114. Асимптотические разложения решений уравнения Бесселя (414). 115. Вырождение уравнения Гаусса (418). 116. Формальные ряды в окрестности иррегулярной особой точки, (419). 117, Пестрое^ ние асимптотических разложений методом последовательных приближений (422). 118. Функции Эйри (428). 119. Асимптотика при большом значении параметра (431). 120. Уравнения с периодическими коэффициентами (438). 121. Условия устойчивости и неустойчивости для урав- , нения Хилла (443). 122. Системы линейных дифференциальных уравнений (451). 123. Регулярная особая точка (454). 124. Регулярные системы (457). 125. Представление решения в окрестности особой точки (464). 126. Канонические решения (467). 127. Связь с регулярными решениями типа Фукса (470). 128. Случай любых Us (471). 129. Формальные разложения в окрестности' иррегулярной особой точки (474).
г л А в А VI
СПЕЦИАЛЬНЫЕ ФУНКЦИИ
§ 1. Сферические функции и функции Лежандра.......... 477
130. Определение сферических функций (477). 131. Явные выражения сферических функций (480). 132. Свойство ортогональности (484). 133. Полиномы Лежандра (488). 134. Разложение по сферическим функциям (493). 135. Доказательство сходимости (496). 136. Связь сферических функций с предельными задачами (498). 137. Задачи Дирихле и Неймана (501). 138. Потенциал объемных масс (503). 139. Потенциал сферического слоя (505). 140. Электрон в центральном поле (508). 141. Шаровые функции и линейные представления группы вращения (510). 142. Функция Лежандра (512). 143. Функция Лежандра второго рода (514).
§ 2. Функции Бесселя................,....., V . . . 518
144. Определение функций Бесселя (518). 145. Соотношения между Функциями Бесселя (520). 146. Ортогональность функций Бесселя и их корни (523). 147. Производящая функция и интегральное представле-
ние (528). 148. Формула Фурье — Бесселя (532). 149. Функции Ханкеля и Неймана (533). 150. Разложение функций Неймана с целым значком (539). 151. Случай чисто мнимого аргумента (541). 152. Новые интегральные представления (543). 153. Асимптотические представления (545). 154. Функции Бесселя и уравнение Лапласа (550). 155. Волновое уравнение в цилиндрических координатах (552). 156. Волновое уравнение в сферических координатах (555).
§ 3. Полиномы Эрмита и Лагерра....................558
'157. Линейный осциллятор и полиномы Эрмита (55$). 158. Свойство ортогональности (562). 159. Производящая функция (563). 160. Параболические координаты и функции Эрмита (565). 161. Полиномы Лагерра (567). 162. Связь полиномов Эрмита и Лагерра (574). 163. Асимптотическое выражение полиномов Эрмита (575). 164. Асимптотическое выражение полиномов Лежандра (579).
§ 4. Эллиптические интегралы и'эллиптические функции......582
165. Приведение эллиптических интегралов к нормальному виду (582).
166. Приведение интегралов к тригонометрической форме (586). 167. Примеры (590). 168. Обращение эллиптического интеграла (592). 169. Общие свойства эллиптических функций (596). 170. Основная* лемма (600). 171. Функции Вейерштрасса (602). 172. Дифференциальное уравнение для $> (и) (607). 173. Функции ak (и) (610). 174. Разложение целой периодической функции (613). 175. Новые обозначения (614). 176. Функция »! (v) (616). 177. Функции $k (v) (619). 178. Свойства функций тэта (622). 179. Выражение чисел ek через fts (625). 180. Эллиптические функции Якоби (627). 181. Основные свойства функций Якоби (629). 182. Дифференциальные уравнения для функций Якоби (631). 183. Формулы сложения (632). 184. Связь функций jf> (и) и sn и (634). 185. Эллиптические координаты (636). 186. Введение эллиптических функций (638). 187. Уравнение Лямэ (639). 188. Простой маятник (641). 189. Пример конформного преобразования (643).
ДОБАВЛЕНИЕ
ПРИВЕДЕНИЕ МАТРИЦ К КАНОНИЧЕСКОЙ ФОРМЕ
190. Вспомогательные предложения (647). 191. Случай простых корней (652). 192. Первый этап преобразований в случае кратных корней (654). 193. Приведение к канонической форме (657). 194. Определение структуры канонической формы (663). 195. Пример (667).
ПРЕДИСЛОВИЕ К ВОСЬМОМУ ИЗДАНИЮ
В настоящее издание внесены следующие добавления и изменения: в главе I указаны результаты, касающиеся формулы Коши и интегралов типа Коши с использованием интегралов Лебега; в главе III изменено изложение приближенного вычисления интегралов по методу скорейшего спуска и добавлено изложение метода стационарной фазы; в главе IV расширено изложение теории аналитических функций одной матрицы. Наибольшие изменения внесены в главу V. В частности, добавлена краткая теория функций Эйри, рассмотрена асимптотика решения одного линейного уравнения второго порядка, содержащего большой параметр, и расширено изложение теории одного дифференциального уравнения второго порядка с периодическим коэффициентом. В главе VI изменено изложение асимптотик функций Ханкеля и Бесселя при большом значке и аргументе.
Большую помощь при изложении указанных вопросов оказали мне В. М. Бабич, В. С. Булдырев и В. А. Якубович. Приношу им мою глубокую благодарность. Без их помощи я не мог бы выполнить большой работы по подготовке настоящего издания томд Ш2.
В. Смирнов
12 февраля 196S г.

Цена: 200руб.

Назад

Заказ

На главную страницу

Hosted by uCoz