Математика | ||||
Справочник по обыкновенным дифференциальным уравнениям-Э.Камке Москва 1976 580стр. DIFFERENTIALGLEICHUNOEN ПРЕДИСЛОВИЕ К ЧЕТВЕРТОМУ ИЗДАНИЮ «Справочник по обыкновенным дифференциальным уравнениям» известного немецкого математика Эриха Камке (1890— 1961) представляет собой уникальное по охвату материала издание и занимает достойное место в мировой справочной математической литературе. Первое издание русского перевода этой книги появилось в 1951 году. Прошедшие с тех пор два десятилетия были периодом бурного развития вычислительной математики и вычислительной техники. Современные вычислительные средства позволяют бы-сгро и с большой точностью решать разнообразные задачи, ранее казавшиеся слишком громоздкими. В частности, численные методы широко применяются в задачах, связанных с обыкновенными дифференциальными уравнениями. Тем не менее воз-^можность записать общее решение того или иного дифференциального уравнения или системы в замкнутом виде имеет во многих случаях значительные преимущества. Поэтому обширный справочный материал, который собран в третьей части книги 3. Камке, — около 1650 уравнений с решениями — сохраняет большое значение и сейчас. Помимо указанного справочного материала, книга Э. Камке содержит изложение (правда, без доказательств) основных понятий и важнейших результатов, относящихся к обыкновенным дифференциальным уравнениям. Здесь освещается и ряд таких вопросов, которые обычно не включаются в учебники по дифференциальным уравнениям (например, теория краевых задач и задач о собственных значениях). Книга Э. Камке содержит множество фактов и результатов, полезных в повседневной работе, она оказалась ценной и нужной для широкого круга научных работников и специалистов в прикладных областях, для инженеров и студентов. Три предыдущих издания перевода этого справочника на русский язык были одобрительно встречены читателями и давно разошлись. LOSUNGSMETHODEN UND LOSUNGEN von Dr. E. КАМКЕ I GEWOHNLICHE DIFFERENTIALGLEICHUNGEN 6, VERBESSEHTE AUFLAGE LEIPZIG 1959 | ||||
ОГЛАВЛЕНИЕ Предисловие к четвертому изданию............... II Некоторые обозначения................... 13 Принятые сокращения в библиографических указаниях....... 13 ЧАСТЬ ПЕРВАЯ ОБЩИЕ МЕТОДЫ РЕШЕНИЯ Глава I. Дифференциальные уравнения первого порядка ...... 19 § 1. Дифференциальные уравнения, разрешенные относительно производной: y' = f(X, у); основные понятия ... ....... 19 1.1. Обозначения и геометрический смысл дифференциального уравнения..................... 19 1.2. Существование и единственность решения ........ 20 § 2. Дифференциальные уравнения, разрешенные относительно^ производной: у' = f(x, у); методы решения............ 21 2.1. Метод ломаных . . .............. 21 2.2. Метод последовательных приближении Пикара — Липделёфа 23 23. Применение степенных рядов............. 24 24. Более общий сличай разложения в ряд......... 25 2.5. Разложение в ряд по параметру............ 27 26. Связь с уравнениями в частных производных....... 27 2.7. Теоремы об оценках................ 28 28. Поведение решений при больших значениях к....... 30 § 3. Дифференциальные уравнения, не разрешенные относительно производной: F (у', у, х) — 0................ 32 3.1. О решениях и методах решения............ 32 3.2. Регулярные и особые линейные элементы ........ 33 § 4. Решение частных видов дифференциальных уравнений первого порядка ....................... 34 4 1. Дифференциальные уравнения с разделяющимися переменными ..................... 35 4.2. у' = f(ax + by + c) ................ 35 4.3. Линейные дифференциальные уравнения......... 35 4.4. Асимптотическое поведение решений линейных дифференциальных уравнений ..... ........... 36 4.5. Уравнение Бернулли у' + f(x)y + g(x)ya = 0....... 38 4.6. Однородные дифференциальные уравнения и приводящиеся к ним....................... 38 4.7. Обобщенно-однородные уравнения........... 40 4.8. Специальное уравнение Риккати: у' + ау2 = Ьхв...... 40 4.9. Общее уравнение Риккати: у' == f(x)y2 + g(x)y + h(x) ... 41 4.10. Уравнение Абеля первого рода............. 44 4.11. Уравнение Абеля второго рода ...,..,,,.,,, 47 4.12. Уравнение в полных дифференциалах.......... 49 4.13. Интегрирующий множитель............. 49 4.14. F(y',y,x) = О, «интегрирование посредством дифференцирования» ....................... 50 4.15. (a) y~G(x,y'); (б) x=G(y,y')........... 50 4.16. (a) G(y',x)=Q-t (б) С(у',у)=0........... 5! 4.17. (a) y~g(y')\ (б) x = g(y') . . . .'......... 5! 4.18. Уравнения Клеро......... ....... 52 4.19. Уравнение Лагранжа — Даламбера ......... 52 4.20. F(x,xyr — у,у') =0. Преобразование Лежандра...... 53 Глава II. Произвольные системы дифференциальных уравнений, разре- ...fluul.iv птнпсительно производных..........54 54 § 5. Основные понятия................. 5.1, Обозначения и геометрический смысл системы дифференциальных уравнений...................54 5.2. Существование и единственность решения........54 53. Теорема существования Каратеодори..........55 5.4. Зависимость решения от начальных условий и от параметров 56 5.5. Вопр'осы устойчивости................57 § 6. Методы решения...................59 6.1. Метод ломаных.................. 59 6.2. Метод последовательных приближений Пикара — Линделёфа . 59 6.3. Применение степенных рядов.............60 6.4. Связь с уравнениями в частных производных.......61 6.5. Редукция системы с помощью известного соотношения между решениями.....................61 6.6. Редукция системы с помощью дифференцирования и исключения 62 6.7. Теоремы об оценках.................62 § 7. Автономные системы..................63 7.1. Определение и геометрический смысл автономной системы . . 64 7.2. О поведении интегральных кривых в окрестности особой точки в случае п = 2.................. 65 7.3. Критерии для определения типа особой точки.......66 Глава HI. Системы линейных дифференциальных уравнений .... 70 § 8, Произвольные линейные системы.............. 70 8.1. Общие замечания................. 70 8.2. Теоремы существования и единственности. Методы решения . 70 8.3. Сведение неоднородной системы к однородной...... 71 8.4. Теоремы об оценках................. 71 § 9. Однородные линейные системы....., . ,....... 72 9.1. Свойства решений. Фундаментальные системы решений ... 72 9 2. Теоремы существования и методы решения........ 74 9.3. Редукция системы к системе с меньшим числом уравнений . . 75 9.4. Сопряженная система дифференциальных уравнений . , . . 76 9.5. Самосопряженные системы дифференциальных уравнений . . 76 9 6. Сопряженные системы дифференциальных форм; тождество Лаграпжа, формула Грина...............77 9.7, Фундаментальные решения..............78 § 10. Однородные линейные системы с особыми точками.......79 10.1. Классификация особых точек.............79 10.2. Слабо особые точки.................80 10.3. Сильно особые точки.........•......82 € 11. Поведение решений^при больших значениях к ......... 83 •§ 12. Линейные системы," зависящие от параметра ......... 84 •§ 13. Линейные системы с постоянными коэффициентами ....... 8Q 13.1. Однородные системы ................ 83 13.2. Системы более общего вида ............. 87 Глава IV. Произвольные дифференциальные уравнения «-го порядка 89 § 14 Уравнения, разрешенные относительно старшей производной: y№=f(x,y,y't .... yb-V) ................ 89 § 15. Уравнения, не разрешенные относительно старшей производной: ,,, ..., 90 15.1. Уравнения в полных дифференциалах .......... 90 152. Обобщенно-однородные уравнения .......... 90 15.3. Уравнения, не содержащие явно х или у ........ 91 Глава V. Линейные дифференциальные уравнения л-го порядка , , . 92 § 16. Произвольные линейные дифференциальные уравнения гг-го порядка 92 16.1. Общие замечания ............. .... 92 16.2. Теоремы существования и единственности Методы решения . 92 163. Исключение производной (п— 1)-го порядка ....... 94 16.4. Сведение неоднородною дифференциального уравнения к од- нородному 94 165. Поведение решений при больших значениях х.......94 § 17. Однородные линейные дифференциальные уравнения п-го порядка 95 17.1. Свойства решений и теоремы существования....... 95 17.2. Понижение порядка дифференциального уравнения .... 96 17.3. О нулях ...решений................. 97 17.4. Фундаментальные решения............. 97 17.5. Сопряженные, самосопряженные и амтисамосопряженные дифференциальные формы................ 98 17.6. Тождество Лагранжа; формулы Дирихле и Грина..... 99 17.7. О решениях сопряженных уравнений и уравнений в полных дифференциалах.................. 100 § 18. Однородные линейные дифференциальные уравнения с особыми точками ......................101 18.1. Классификация особых точек............: 101 18.2. Случай, когда точка х = ? регулярная или слабо особая . . 104 18.3. Случай, когда точка х = оо регулярная или слабо особая . . 106 18.4. Случай, когда точка х = | сильно особая........107 18.5. Случай, когда точка х = оо сильно особая........ 108 18.6. Дифференциальные уравнения с полиномиальными коэффициентами ....................!09 187. Дифференциальные уравнения с периодическими коэффициентами ................... ... 109 18.8. Дифференциальные уравнения с двоякопериодическими коэффициентами ...................111 18.9. Случай действительного переменного..........112 § 19. Решение линейных дифференциальных уравнений с помощью определенных интегралов.................. 1!3 19.1. Общий принцип.................. 113 19.2. Преобразование Лапласа.............. 116 19.3. Специальное преобразование Лапласа......... 119 19.4. Преобразование Меллина.............. 120 19.5. Преобразование Эйлера............... ГЛ 19.6. Решение с помощью двойных интегралов........ 12Э § 20. Поведение решений при больших значениях х.........124 20.1. Полиномиальные коэффициенты ...........124 20.2. Коэффициенты более общего вида...........125 20.3. Непрерывные коэффициенты . ...........125 20.4. ОсцилляцИонные теоремы..............126 § 21. Линейные дифференциальные уравнения л-го порядка, зависящие от параметра.....................127 § 22. Некоторые специальные типы линейных дифференциальных уравнений «-го порядка....................129- 22.1. Однородные дифференциальные уравнения с постоянными коэффициентами ..................129 22.2. Неоднородные дифференциальные уравнения с постоянными коэффициентами .................130 22.3. Уравнения Эйлера.................. 332 22.4. Уравнение Лапласа................1321 22.5. Уравнения с полиномиальными коэффициентами......133 22.6. Уравнение Похгаммера...............134 Глава VI. Дкфференциальные уравнения второго порядка.....139 § 23. Нелинейные дифференциальные уравнения второго порядка . . , 139/ 23.1. Методы решения частных типов нелинейных уравнений . . . 139 23.2. Некоторые дополнительные замечания.........140 23.3. Теоремы о предельных значениях...........141 23.4. Осцилляционная теорема..............142 § 24. Произвольные линейные дифференциальные уравнения второго порядка.......................142 24.1. Общие замечания.................142 24.2. Некоторые методы решения.............143 24.3. Теоремы об оценках..... ..........144 § 25. Однородные линейные дифференциальные уравнения второго порядка .......................145- 25.1. Редукция линейных дифференциальных уравнений второго порядка .....................145 25.2. Дальнейшие замечания о редукции линейных уравнений второго порядка.................. . 147 25.3. Разложение решения в непрерывную дробь........149 25.4. Общие замечания о нулях решений..........150 25.5. Нули решений на конечном интервале..........i51 25.6. Поведение решений при ;с->оо............153 25.7. Линейные дифференциальные уравнения второго порядка с особыми точками.................155 25.8. Приближенные решения. Асимптотические решения; действительное переменное.................157 25.9. Асимптотические решения; комплексное переменное .... 161 25.10. Метод ВБК...................162 Глава VII. Линейные дифференциальные уравнения третьего и четвертого порядков..................163 § 26. Линейные дифференциальные уравнения третьего порядка .... 163 § 27. Линейные дифференциальные уравнения четвертого порядка . . . 164 Глава VIII. Приближенные методы интегрирования дифференциальных уравнений.................165 § 28. Приближенное интегрирование дифференциальных уравнений первого порядка.....................165 28.1. Метод ломаных..................165. 28.2. Метод добавочного полушага.............166 28.3. Метод Рунге — Хейна — Кутта............167 28.4. Комбинирование интерполяции и последовательных приближений.....................168 28.5. Метод Адамса............-^.....170 28.6. Дополнения к методу Адамса............172 « 29. Приближенное интегрирование дифференциальных уравнений высших порядков....................174 29.1. Методы приближенного интегрирования систем дифференциальных уравнений первого порядка .......... 174 29.2. Метод ломаных для дифференциальных уравнений второго порядка ....................176 29.3. Метод Рунге — Кутта для дифференциальных уравнений второго порядка...................177 29.4. Метод Адамса — Штермера для уравнения у" ш f(x, у,у") . , 177 295. Метод Адамса — Ште'рмера для уравнения y" = f(x,y} . . . 178 29.6. Метод Влесса для уравнения У =» f(x, у, у').......179 ЧАСТЬ ВТОРАЯ КРАЕВЫЕ ЗАДАЧИ И ЗАДАЧИ О СОБСТВЕННЫХ ЗНАЧЕНИЯХ Глава I. Краевые задачи и задачи о собственных значениях для линейных дифференциальных уравнений rt-го порядка . , , , . 182 § 1. Общая теория краевых задач...............]32 1.1. Обозначения и предварительные замечания........182 1.2. Условия разрешимости краевой задачи..........184 1.3. Сопряженная краевая задача.............!85 1.4. Самосопряженные краевые задачи...........187 1.5. Функция Грина................. 188 1.6. Решение неоднородной краевой задачи с помощью функции Грина .....................190 1.7. Обобщенная функция Грина.............. § 2. Краевые задачи и задачи о собственных значениях для уравнения 2.1. Собственные значения и собственные функции; характеристический детерминант Д(Я)...............193 2.2. Сопряженная задача о собственных значениях и резольвента Грина; полная биортогональная система ......... 194 23. Нормированные краевые условия; регулярные задачи о собственных значениях.................196 2.4. Собственные значения для регулярных и нерегулярных задач о собственных значениях............... 198 2.5. Разложение заданной функции по собственным функциям регулярных и нерегулярных задач о собственных значениях . .399 2.6. Самосопряженные нормальные задачи о собственных знамениях 200 2.7. Об интегральных уравнениях типа Фредгольма......204 2.8. Связь между краевыми задачами и интегральными уравнениями типа Фредгольма...............209 2.9. Связь между задачами о собственных значениях и интегральными уравнениями типа Фредгольма..........210 2.10. Об интегральных уравнениях типа Вольтерра...... 211 2.11, Связь между краевыми задачами и интегральными уравнениями типа Вольтерра............... 212 2.12. Связь между задачами о сооственных значенинл п пп.ч^о.." ными уравнениями типа Вольтерра .... ..... 213 2.13. Связь между задачами о собственных значениях и вариационным исчислением...............215 2.14. Применение к разложению по собственным функциям . . . 218 2.15. Дополнительные замечания.............2191 § 3. Приближенные методы решения задач о собственных значениях и краевых задач....................222" 3.1. Приближенный метод Галеркииа — Ритца........222 3.2. Приближенный метод Граммеля............224 3.3. Решение неоднородной краевой задачи по методу Галерки- на — Ритца ............. .....225 3.4. Метод последовательных приближений.........22& 3.5. Приближенное решение краевых задач и задач о собственных значениях методом конечных разностей........ 227 3.6. Метод возмущений................230 3.7. Оценки для собственных значений...........233 3.8. Обзор способов вычисления собственных значений и собственных функции..... ......... ... 236 § 4. Самосопряженные задачи о собственных значениях для уравнения Р(У) = ЬСМ................... 238 4.1. Постановка задачи . . . . ..........238 4.2. Общие предварительные замечания ... ......239 4.3. Нормальные задачи о собственных значениях ......240 4.4. Положительно определенные задачи о собственных значениях 241 4.5. Разложение по собственным функциям........ . 244 § 5. Краевые и дополнительные условия более общего вида.....247 Глава П. Краевые задачи и задачи о собственных значениях для систем линейных дифференциальных уравнений......24!> § 6. Краевые задачи и задачи о собственных значениях для систем линейных дифференциальных уравнений............249 6.1. Обозначения и условия разрешимости..........249- 6.2. Сопряженная краевая задача.............250 6.3. Матрица Грина..................252 6.4. Задачи о собственных значениях ........252 6.5. Самосопряженные задачи о собственных значениях . . . 253. Глава III. Краевые задачи и задачи о собственных значениях для уравнений низших порядков .,.,,., ...... 25G § 7. Задачи первого порядка.................256 7.1. Линейные задачи.................256 7.2. Нелинейные задачи................257 § 8. Линейные краевые задачи второго порядка.......... 257 8.1. Общие замечания...... .........257 8.2. Функция Грина..................258- 8.3. Оценки для решений краевых задач первого рода.....259 8.4. Краевые условия при \х\ -> оо.............259 8.5. Отыскание периодических решений...........260 8.6. Одна краевая задача, связанная с изучением течения жидкости ......................260 § 9, Линейные задачи о собственных значениях второго порядка . . .261 9.1. Общие замечания.................261 9.2 Самосопряженные задачи о собственных значениях .... 263 9.3. у'= F(x,K)z, г'= —G(x,h)y и краевые условия самосопря-женны.....................266 9.4. Задачи о собственных значениях и вариационный принцип . 269 9.5. О практическом вычислении собственных значений и собственных функций...................271 9.6. Задачи о собственных значениях, не обязательно самосопряженные ....................271 9.7. Дополнительные условия более общего вида.......273 98. Задачи о собственных значениях, содержащие несколько па- \ рамстров ............... ..... 275 9.9. Дифференциальные уравнения с особенностями в граничных точках.....................276 9.10. Задачи о собственных значениях на бесконечном интервале . 277 § 10. Нелинейные краевые задачи и задачи о собственных значениях второго порядка.....................278 10.1. Краевые задачи для конечною интервала........278 10.2. Краевые задачи для полуограниченного интервала.....28! 10.3. Задачи о собственных значениях...........282 § 11. Краевые задачи я задачи о собственных значениях третьего — восьмого порядков ................... 283 ИЛ. Линейные задачи о собственных значениях третьего порядка 283 11.2. Линейные задачи о собственных значениях четвертого порядка 284 11.3. Линейные задачи для системы двух дифференциальных уравнений второго порядка ............... 286 11.4. Нелинейные краевые задачи четвертого порядка......287 11.5. Задачи о собственных значениях более высокого порядка . . 288 ЧАСТЬ ТРЕТЬЯ ОТДЕЛЬНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Предварительные замечания................290 Глава I. Дифференциальные уравнения первого порядка......294 1—367. Дифференциальные уравнения первой степени относительно у' ..................294 368—517. Дифференциальные уравнения второй степени относительно у' ..................334 518—544. Дифференциальные уравнения третьей степени относительно у' ..................354 545—576. Дифференциальные уравнения более общего вида . . . 358 Глава II. Линейные дифференциальные уравнения второго порядка . . 363 1—90. ау" +...........'.........363 91—145. (с*+&)у" +..................385 146—221. хУ' +.....................396 222—250. (х*±а*)у" +..................410 251— 303. (ах$ + Ьх + с)у" +.............. 419 304-341. (аг>+ ...)(/" +..................435 342—396. (ах* + ,..)у" +.................442 397-410. (ах* +...)у" + ...; п>5............449 411—445. Прочие дифференциальные уравнения........454 Глава III. Линейные дифференциальные уравнения третьего порядка 460 Глава IV. Линейные дифференциальные уравнения четвершго порядка 471 Глава V. Линейные дифференциальные уравнения пятого и более высоких порядков.................,_ 482 Глава VI. Нелинейные дифференциальные уравнения второго порядка 485- 1—72. ay" = F(x,y,y') ................485- 73—103. f(x)y" = F(x,y,y') ..............497 104—187. f(x)yy" = F(x,y,y') ..............50а 188—225. f(x,y)y"~F(x,y,y') ..............514 226—249. Прочие дифференциальные уравнения........520 Глава VII. Нелинейные дифференциальные уравнения третьего и более высоких порядков..............525 Глава VIII. Системы линейных дифференциальных уравнений . , , , 530 Предварительные замечания...............530 1—18. Системы двух дифференциальных уравнений первого порядка с постоянными коэффициентами........530 19—25. Системы двух дифференциальных уравнений первого порядка с переменными коэффициентами,/.......534 26—43. Системы двух дифференциальных уравнений порядка выше первого.................535 44—57. Системы более чем двух дифференциальных уравнений 538 Глава IX. Системы нелинейных дифференциальных уравнений . , ,541 1—17. Системы двух дифференциальных уравнений......541 18—29. Системы более чем двух дифференциальных уравнений 544 ДОПОЛНЕНИЯ О решении линейных однородных уравнений второго порядка (#. Збор- ник).........................547 Дополнения к книге Э. Камке (Д. Матринович)..........556- Новый способ классификации линейных дифференциальных уравнений и построения их общего решения с помощью рекуррентных формул >• (И. Зборник)....................56» - Предметный указатель................571 Цена: 150руб. |
||||