Математика | ||||
Математический анализ элементарных функций С.Г.Крейн Москва 1963 168стр | ||||
ПРЕДИСЛОВИЕ Настоящая книга написана на основе лекций по курсу высшей математики, которые читались одним из авторов в течение ряда лет в Криворожском горнорудном и в Воронежском лесотехническом институтах. Общеизвестно, что при изучении курса высшей математики учащийся встречает ряд трудностей. Особенно трудно усваивается первая часть математического анализа, содержащая теорию пределов и дифференциальное исчисление Эти трудности, с одной стороны, объясняются обилием новых понятий и методов, с другой, по нашему мнению, — недостатками в построении курса. Главным из них мы считаем отсутствие ясности в том, что является основным объектом исследования. Создается впечатление, что наиболее важным является изучение логической взаимосвязи между различными новыми понятиями. Нам кажется, что основное содержание любого курса определяется не общностью понятий и теорем, которые в нем вводятся, а запасом примеров и приложений, которые рассматриваются в самом курсе, на практических занятиях и в смежных курсах. Можно применять все более и более общий подход к изложению понятий числа, функции, предела и т. п., однако, если при этом не изменится круг задач, решаемых на лекциях, практических занятиях и в смежных курсах, то это только приведет к отрыву метода изложения от объекта исследования. Авторы считают, что основным объектом исследования в курсе математического анализа во ВТУЗе являются функциональные зависимости между величинами, выражающиеся точно или приближенно с помощью элементарных функций. Те небольшие выходы за рамки класса элементарных функций, которые имеются в теории интегралов, рядов и диф- ПРЕДИСЛОВИЕ 9 ференциалышх уравнений, еще больше подчеркивают основное содержание курса. Если подготовка инженера требует большего, то вводят такие дополнительные разделы или курсы, как «Специальные функции», «Аналитические функции» и т. п. Точка зрения авторов отразилась в названии и содержании книги. В ней излагается не математический анализ вообще, а математический анализ элементарных функций. Изучение математического анализа в ВУЗе осложняется тем, что выпускники средней школы имеют чрезвычайно скудный запас сведений об элементарных функциях. С целью пополнить этот запас в книгу введена большая глава «Элементарные функции», в которой приводится детальное исследование основных элементарных функций методами «школьной математики» (даже без использования бинома Ньютона). При этом рассматриваются уже все основные характеристики функций и их графиков, изучаемые в курсе анализа (область определения, участки возрастания и убывания, точки экстремума, участки выпуклости и вогнутости графиков, точки перегиба, асимптоты и т. д.). Все свойства и соответствующие им понятия вводятся не «про запас», а по мере их обнаружения при изучении той или иной функции. В конце первой главы затрагивается вопрос о линеаризации простейших алгебраических функций. Линеаризации функции путем отбрасывания степеней малой величины выше первой авторы придают важное значение, так как именно таким образом она производится большей частью в прикладных задачах. Во второй главе изложены основы теории пределов. Вычисление наиболее важных пределов привязано к задаче о нахождении касательной к графикам основных элементарных функций. Так, число е вводится как основание показательной функции, угловой коэффициент касательной к графику которой в точке пересечения с осью ординат равен единице. В третьей главе («Линеаризация элементарных функций») на базе вычисленных пределов получаются формулы для линеаризации основных элементарных функций вблизи нуля, а затем и для линеаризации вблизи любой точки. Производные получаются как коэффициенты при Дх в формулах линеаризации. Вы под всзх формул для производных однотипен и основан на применении «теоремы сложения» и формулы линеаризации вблизи нуля для соответствующей функции. Широко используются понятия эквивалентных бесконечно малых и порядка одной бесконечно малой относительно другой. Четвертая глава — «Применение производных к исследованию функций» — написана сжато. Основные задачи на исследование функций уже поставлены в первой главе и быстро решаются с помощью теоремы Лагранжа. Формула Тейлора выводится как дальнейшее естественное развитие формулы линеаризации и применяется к разложению основных элементарных функций. Изложение иллюстрируется небольшим числом примеров физического характера. Уровень строгости изложения разный в разных главах. Если в первой главе используется только интуитивное понятие предела функции, то во второй главе оно вводится строго. Свойства непрерывных функций и непрерывность основных элементарных функций используются без их доказательства. Авторы еще раз подчеркивают, что они пытались построить изложение так, чтобы максимально сузить разрыв между построением аппарата математического анализа и основным объектом, к которому он применяется, — элементарными функциями. Насколько им удалось это, будет судить читатель. С. Г. Крейн В. И, Ушакова Цена: 50руб. |
||||